

# Statistical Topic Models

Kuan-Yu Chen (陳冠宇)

2020/11/13 @ TR-313, NTUST

# Review

---

- **Latent Semantic Analysis** also called
  - Latent Semantic Indexing (LSI)
  - Latent Semantic Mapping (LSM)
  - Two-Mode Factor Analysis
- SVD is used to decompose a word-by-document matrix
$$A_{|V| \times |\mathbf{D}|} = \bar{U}_{|V| \times |V|} \bar{\Sigma}_{|V| \times |\mathbf{D}|} \bar{V}_{|\mathbf{D}| \times |\mathbf{D}|}^T \approx U_{|V| \times K} \Sigma_{K \times K} V_{K \times |\mathbf{D}|}^T = A'_{|V| \times |\mathbf{D}|}$$
  - New representations
    - For word  $w_i$ , the new vector representation is  $\Sigma u_i^T$
    - For document  $d_j$ , the new vector representation is  $\Sigma v_j^T$
  - The fold-in strategy is used to infer the query representation

$$(U_{|V| \times K})^T (\vec{q})_{|V| \times 1} = \Sigma_{K \times K} v_q^T$$

# Introduction

---

- Classic IR might lead to poor retrieval due to:
  - Relevant documents that do not contain at least one index term are not retrieved
  - Synonymy (同義詞) and polysemy (一詞多義) are crucial for IR
    - Car vs. Automobile

The prevalence of synonyms tends to decrease the **recall** performance of retrieval systems
    - Bank

Polysemy is one factor underlying poor **precision**
  - Retrieval based on index terms is vague and noisy
    - The user information need is more related to **concepts** and ideas than to **index terms**

# From LSA to Probabilistic Topic Models

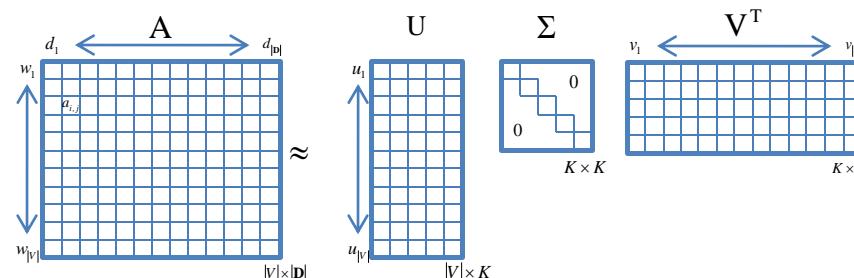
---

- Three important claims made for LSA
  - The semantic information can be derived from a word-document co-occurrence matrix
  - The dimension reduction is an essential part of its derivation
  - Words and documents can be represented as points in the Euclidean space
- Probabilistic topic models are consistent with the first two claims, but differs in the third one
  - The semantic properties of words and documents are expressed in terms of probabilistic topics
- **Probabilistic Latent Semantic Analysis** also called
  - Probabilistic Latent Semantic Indexing (PLSI)
  - Aspect Model

# Probabilistic Latent Semantic Analysis

- LSA uses SVD to decompose a matrix

$$A_{|V| \times |\mathbf{D}|} = \bar{U}_{|V| \times |V|} \bar{\Sigma}_{|V| \times |\mathbf{D}|} \bar{V}_{|\mathbf{D}| \times |\mathbf{D}|}^T \approx U_{|V| \times K} \Sigma_{K \times K} V_{K \times |\mathbf{D}|}^T = A'_{|V| \times |\mathbf{D}|}$$



- PLSA is a probabilistic counterpart of LSA

$$P(w_i, d_j) = P(d_j)P(w_i | d_j) = P(d_j) \sum_{k=1}^K P(w_i | T_k)P(T_k | d_j)$$

- $P(d_j)$ : the probability of selecting document  $d_j$
- $P(w_i | T_k)$ : the probability of word  $w_i$  condition on a latent factor/topic  $T_k$ 
  - **Aspect!**
- $P(T_k | d_j)$ : the probability of a latent factor/topic  $T_k$  generated by document  $d_j$

# PLSA – 1

- The PLSA model is a latent variable model for co-occurrence data (i.e., each pair of word  $w_i$  and document  $d_j$ ) which associates an unobserved class variable (i.e., latent factor  $T_k$ )

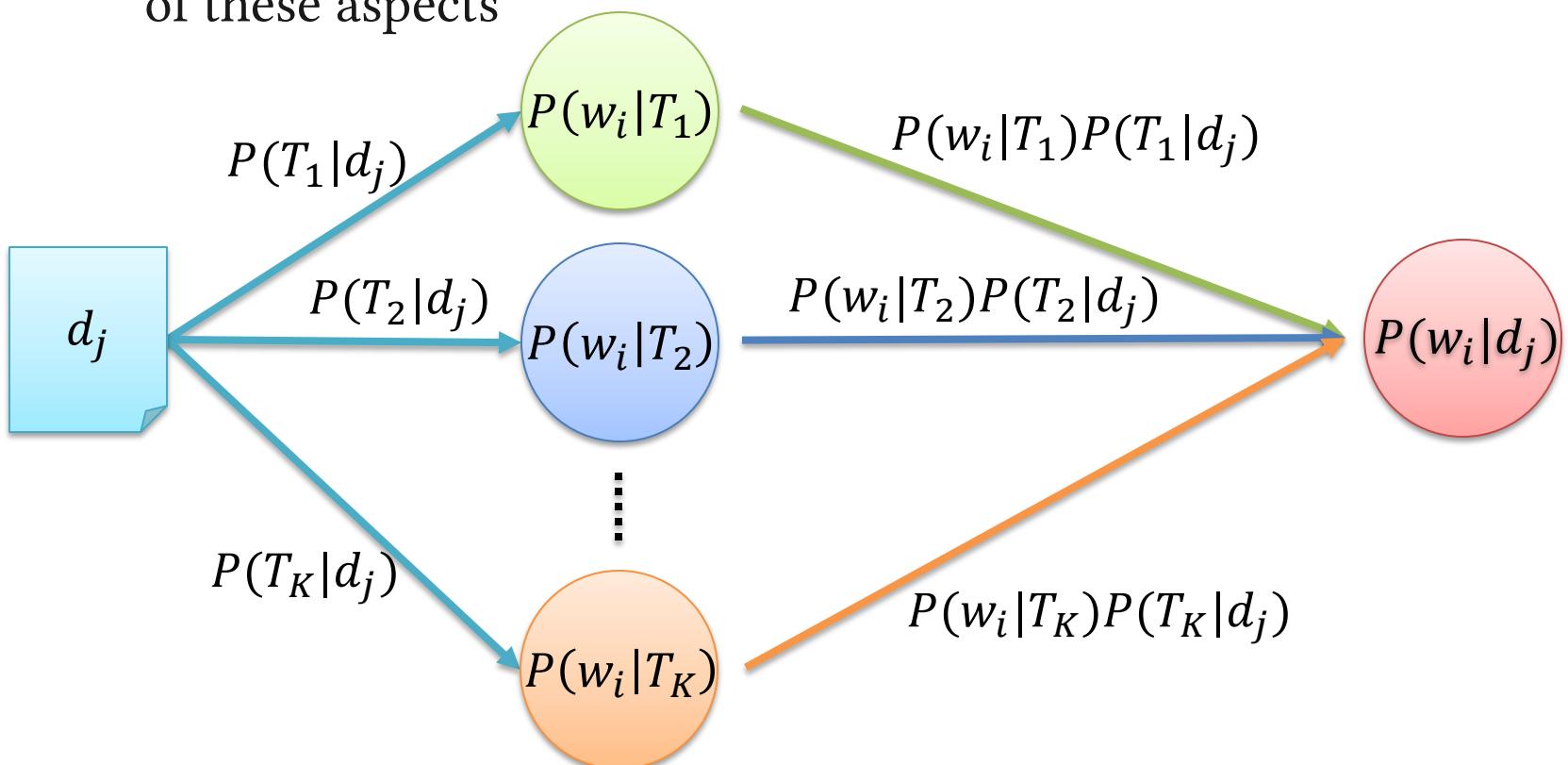
$$P(w_i, d_j) = P(d_j)P(w_i|d_j) = P(d_j) \sum_{k=1}^K P(w_i|T_k)P(T_k|d_j)$$

$$\begin{aligned} P(w_i|d_j) &= \sum_{k=1}^K P(w_i, T_k|d_j) = \sum_{k=1}^K \frac{P(w_i, T_k, d_j)}{P(d_j)} \\ &= \sum_{k=1}^K \frac{P(w_i, d_j|T_k)P(T_k)}{P(d_j)} \\ &= \sum_{k=1}^K \frac{P(w_i|T_k)P(d_j|T_k)P(T_k)}{P(d_j)} \\ &= \sum_{k=1}^K \frac{P(w_i|T_k)P(d_j, T_k)}{P(d_j)} = \sum_{k=1}^K P(w_i|T_k)P(T_k|d_j) \end{aligned}$$

**Conditional Independence Assumption**  
document and word are independent  
conditioned on the state of the associated  
latent variable

# PLSA – 2

- The goal of PLSA is to
  - identify conditional probability mass functions  $P(w_i|T_k)$
  - the document-specific word distributions  $P(w_i|d_j)$  are as faithfully as possible approximated by **convex combinations** of these aspects



# PLSA – 3

---

- The training objective is defined to maximize the total log-likelihood of a given training collection
  - The model parameters are  $P(d_j)$ ,  $P(w_i|T_k)$ , and  $P(T_k|d_j)$

$$P(w_i, d_j) = P(d_j)P(w_i|d_j) = P(d_j) \sum_{k=1}^K P(w_i|T_k)P(T_k|d_j)$$

$$\begin{aligned}\mathcal{L} &= \sum_{w_i \in V} \sum_{d_j \in \mathbf{D}} c(w_i, d_j) \log P(w_i, d_j) \\ &= \sum_{w_i \in V} \sum_{d_j \in \mathbf{D}} c(w_i, d_j) \log \left( P(d_j) \sum_{k=1}^K P(w_i|T_k)P(T_k|d_j) \right)\end{aligned}$$

# PLSA – 4.

---

- By using the **Expectation-Maximization algorithm**
  - E-step

$$P(T_k | w_i, d_j) = \frac{P(w_i | T_k) P(T_k | d_j)}{\sum_{k=1}^K P(w_i | T_k) P(T_k | d_j)}$$

- M-step

$$P(w_i | T_k) = \frac{\sum_{d_j \in \mathbf{D}} c(w_i, d_j) P(T_k | w_i, d_j)}{\sum_{i'=1}^{|V|} \sum_{d_j \in \mathbf{D}} c(w_{i'}, d_j) P(T_k | w_{i'}, d_j)}$$

$$P(T_k | d_j) = \frac{\sum_{i=1}^{|V|} c(w_i, d_j) P(T_k | w_i, d_j)}{\sum_{i'=1}^{|V|} c(w_{i'}, d_j)} = \frac{\sum_{i=1}^{|V|} c(w_i, d_j) P(T_k | w_i, d_j)}{|d_j|}$$

# PLSA – 4..

---

- About the E-step:

$$P(T_k | w_i, d_j) = \frac{P(w_i | T_k) P(T_k | d_j)}{\sum_{k=1}^K P(w_i | T_k) P(T_k | d_j)}$$

$$= \frac{P(w_i | T_k) \frac{P(T_k, d_j)}{P(d_j)} \frac{P(T_k)}{P(T_k)}}{\sum_{k=1}^K P(w_i | T_k) P(T_k | d_j)} = \frac{P(w_i | T_k) P(d_j | T_k) \frac{P(T_k)}{P(d_j)}}{\sum_{k=1}^K P(w_i | T_k) P(T_k | d_j)}$$

$$= \frac{P(w_i, d_j | T_k) \frac{P(T_k)}{P(d_j)}}{\sum_{k=1}^K P(w_i | T_k) P(T_k | d_j)} = \frac{\frac{P(w_i, d_j, T_k)}{P(d_j)}}{\sum_{k=1}^K P(w_i | T_k) P(T_k | d_j)}$$

$$= \frac{\frac{P(w_i, d_j, T_k)}{P(d_j)}}{\sum_{k=1}^K \frac{P(w_i, d_j, T_k)}{P(d_j)}} = \frac{P(w_i, d_j, T_k)}{P(w_i, d_j)}$$

# PLSA – 5

---

- Consequently, for a given pair of query and document, the relevance degree can be determined by combining unigram model and PLSA model

$$\begin{aligned}
 P(q|d_j) &\equiv \prod_{i=1}^{|q|} P(w_i|d_j) \\
 &= \prod_{i=1}^{|q|} \left( \alpha \cdot P(w_i|d_j) + (1 - \alpha) \cdot P_{PLSA}(w_i|d_j) \right) \\
 &= \prod_{i=1}^{|q|} \left[ \alpha \cdot P(w_i|d_j) + (1 - \alpha) \cdot \left( \sum_{k=1}^K P(w_i|T_k) P(T_k|d_j) \right) \right]
 \end{aligned}$$

$$P(w_i|d_j) = \frac{c(w_i, d_j)}{|d_j|}$$

- In order to incorporate the general information, the background model can also be integrated

$$P(q|d_j) = \prod_{i=1}^{|q|} \left[ \alpha \cdot P(w_i|d_j) + \beta \cdot \left( \sum_{k=1}^K P(w_i|T_k) P(T_k|d_j) \right) + (1 - \alpha - \beta) \cdot P_{BG}(w_i) \right]$$

# PLSA – 6

---

- For a new document  $d_m$ , the **fold-in** strategy can be performed to obtain the topic distribution  $P(T_k|d_m)$  for the document
  - E-step

$$P(T_k|w_i, d_m) = \frac{P(w_i|T_k)P(T_k|d_m)}{\sum_{k=1}^K P(w_i|T_k)P(T_k|d_m)}$$

- M-step
  - The word distribution for each topic  $P(w_i|T_k)$  is fixed

$$P(T_k|d_m) = \frac{\sum_{i=1}^{|V|} c(w_i, d_m)P(T_k|w_i, d_m)}{\sum_{i'=1}^{|V|} c(w_{i'}, d_m)}$$

# PLSA – 7

---

- In addition to the query likelihood measure, we can combine PLSA with the **vector space model**
  - Each document has its own distribution over topic  $P(T_k|d_j)$
  - Query can be treated as a document, thus the fold-in strategy can be performed to obtain  $P(T_k|q)$
  - The topic distributions for document and query are vector representations
  - The similarity degree can be estimated under the semantic space

$$sim(q, d_j) = \cos(\vec{q}, \vec{d}_j) = \frac{\sum_{k=1}^K P(T_k|q)P(T_k|d_j)}{\sqrt{\sum_{k=1}^K P(T_k|q)^2} \sqrt{\sum_{k=1}^K P(T_k|d_j)^2}}$$

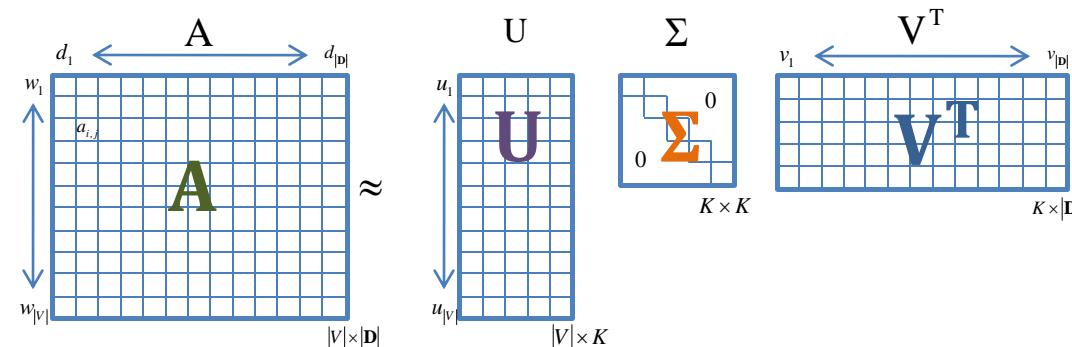
# Link PLSA and LSA

- Another derivation of PLSA model

$$\begin{aligned}
 P(w_i, d_j) &= \sum_{k=1}^K P(w_i, d_j, T_k) \\
 &= \sum_{k=1}^K P(w_i | d_j, T_k) P(d_j, T_k) \\
 &= \sum_{k=1}^K P(w_i | T_k) P(d_j, T_k) \\
 &= \sum_{k=1}^K P(w_i | T_k) P(T_k) P(d_j | T_k)
 \end{aligned}$$

**Conditional Independence Assumption**  
 document and word are independent  
 conditioned on the state of the associated  
 latent variable

$$\begin{aligned}
 P(T_k) P(d_j | T_k) &= P(T_k) \frac{P(d_j, T_k)}{P(T_k)} \\
 &= P(d_j, T_k) = P(T_k | d_j) P(d_j)
 \end{aligned}$$



# Comparisons – PLSA & LSA

---

- Decomposition/Approximation
  - LSA: least-squares criterion measured on the L2- or Frobenius norms of the word-by-document matrix
  - PLSA: maximization of the collection likelihood, which implies to minimize the cross-entropy loss
- Computational complexity
  - LSA: SVD decomposition
  - PLSA: EM training
  - The model complexity of Both LSA and PLSA grows linearly with the number of training documents
  - There is no general way to estimate or predict the vector representation (of LSA) or the model parameters (of PLSA) for a newly observed document
    - Fold-in strategy

# Revisiting the Objective Function

$$\mathcal{L} = - \sum_{w_i \in V} \sum_{d_j \in \mathbf{D}} c(w_i, d_j) \log P(w_i, d_j)$$

$$H(T, E) = - \sum_{x \in \mathbf{X}} T(x) \log E(x)$$

$$= - \sum_{w_i \in V} \sum_{d_j \in \mathbf{D}} c(w_i, d_j) \log \left( P(d_j) \sum_{k=1}^K P(w_i | T_k) P(T_k | d_j) \right)$$

$$= - \sum_{d_j \in \mathbf{D}} \sum_{w_i \in V} c(w_i, d_j) \left[ \log P(d_j) + \log \left( \sum_{k=1}^K P(w_i | T_k) P(T_k | d_j) \right) \right]$$

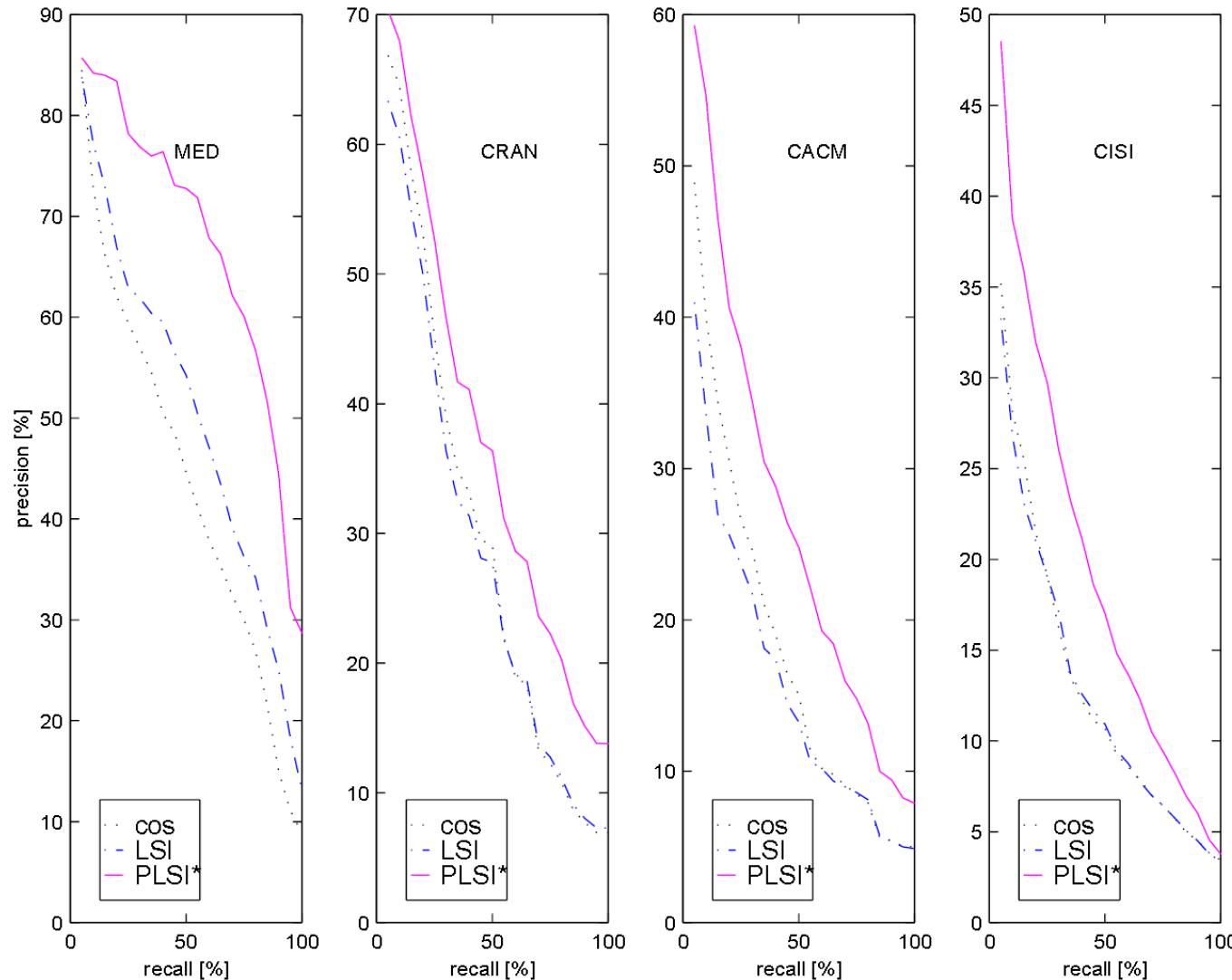
$$= - \sum_{d_j \in \mathbf{D}} \sum_{w_i \in V} |d_j| \frac{c(w_i, d_j)}{|d_j|} \left[ \log P(d_j) + \log \left( \sum_{k=1}^K P(w_i | T_k) P(T_k | d_j) \right) \right]$$

$$= - \sum_{d_j \in \mathbf{D}} |d_j| \sum_{w_i \in V} P(w_i | d_j) [\log P(d_j) + \log P_{PLSA}(w_i | d_j)]$$

$$= \sum_{d_j \in \mathbf{D}} |d_j| \sum_{w_i \in V} \underbrace{(-P(w_i | d_j) \log P(d_j))}_{\text{Constant}} - \underbrace{P(w_i | d_j) \log P_{PLSA}(w_i | d_j)}_{\text{Cross Entropy}}$$

# Comparisons – Experiments

- All of the results are based on cosine similarity measure



# Comparisons – Factors/Topics

- Factors from a 128 factor decomposition of the TDT-1 corpus
  - Factors are represented by their 10 most probable words, i.e., the words are ordered according to  $P(w_i|T_k)$
- There is no obvious interpretation of the directions in the LSA latent space, while the directions in the PLSA space are interpretable as multinomial word distributions

| “plane”   | “space shuttle” | “family” | “Hollywood”   | “Bosnia”     | “Iraq”    | “Rwanda” | “Kobe”     |
|-----------|-----------------|----------|---------------|--------------|-----------|----------|------------|
| plane     | space           | home     | film          | un           | iraq      | refugees | building   |
| airport   | shuttle         | family   | movie         | bosnian      | iraqi     | aid      | city       |
| crash     | mission         | like     | music         | serbs        | sanctions | rwanda   | people     |
| flight    | astronauts      | love     | new           | bosnia       | kuwait    | relief   | rescue     |
| safety    | launch          | kids     | best          | serb         | un        | people   | buildings  |
| aircraft  | station         | mother   | hollywood     | sarajevo     | council   | camps    | workers    |
| air       | crew            | life     | love          | nato         | gulf      | zaire    | kobe       |
| passenger | nasa            | happy    | actor         | peacekeepers | saddam    | camp     | victims    |
| board     | satellite       | friends  | entertainment | nations      | baghdad   | food     | area       |
| airline   | earth           | cnn      | star          | peace        | hussein   | rwandan  | earthquake |

# Comparisons – Polysemy

---

- Many words in natural language are polysemous, having multiple senses; their semantic ambiguity can only be resolved by other words in the context
  - For example, the word PLAY is given relatively high probability related to the different senses of the word (*playing music, theater play, playing games*)

Topic 77

| word        | prob. |
|-------------|-------|
| MUSIC       | .090  |
| DANCE       | .034  |
| SONG        | .033  |
| <b>PLAY</b> | .030  |
| SING        | .026  |
| SINGING     | .026  |
| BAND        | .026  |
| PLAYED      | .023  |
| SANG        | .022  |
| SONGS       | .021  |
| DANCING     | .020  |
| PIANO       | .017  |
| PLAYING     | .016  |
| RHYTHM      | .015  |
| ALBERT      | .013  |
| MUSICAL     | .013  |

Topic 82

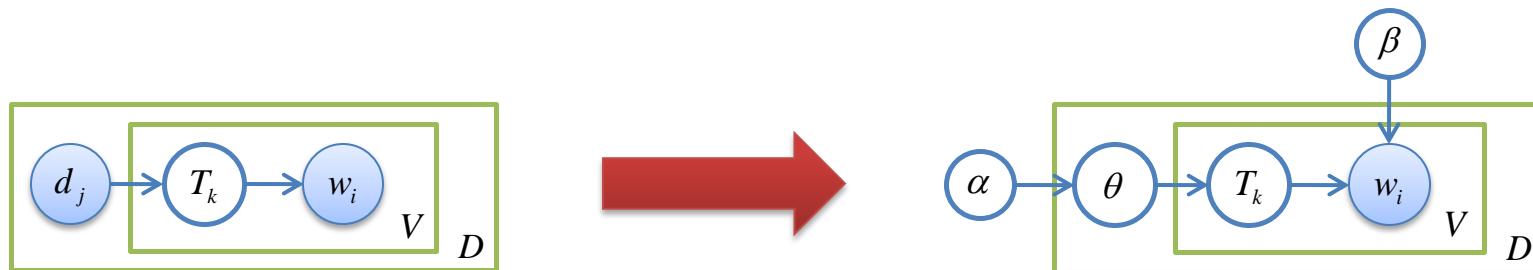
| word        | prob. |
|-------------|-------|
| LITERATURE  | .031  |
| POEM        | .028  |
| POETRY      | .027  |
| POET        | .020  |
| PLAYS       | .019  |
| POEMS       | .019  |
| <b>PLAY</b> | .015  |
| LITERARY    | .013  |
| WRITERS     | .013  |
| DRAMA       | .012  |
| WROTE       | .012  |
| POETS       | .011  |
| WRITER      | .011  |
| SHAKESPEARE | .010  |
| WRITTEN     | .009  |
| STAGE       | .009  |

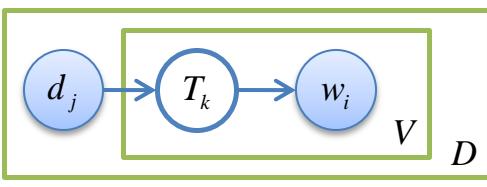
Topic 166

| word        | prob. |
|-------------|-------|
| <b>PLAY</b> | .136  |
| BALL        | .129  |
| GAME        | .065  |
| PLAYING     | .042  |
| HIT         | .032  |
| PLAYED      | .031  |
| BASEBALL    | .027  |
| GAMES       | .025  |
| BAT         | .019  |
| RUN         | .019  |
| THROW       | .016  |
| BALLS       | .015  |
| TENNIS      | .011  |
| HOME        | .010  |
| CATCH       | .010  |
| FIELD       | .010  |

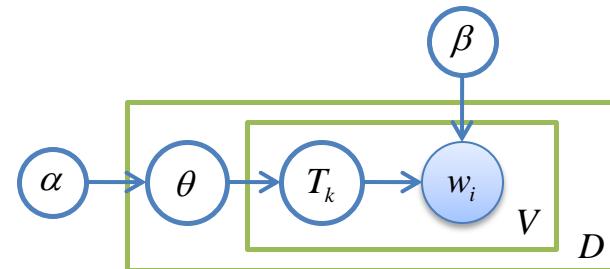
# From PLSA to Latent Dirichelet Allocation

- In traditional topic models, there are several problems:
  - The model parameters grow linearly with the size of the corpus
    - EM is time-consuming
  - It is not clear how to assign probability to a document outside of the training set
    - Fold-in is a compromising strategy
    - Retrain the model is time-consuming





# PLSA & LDA – 1



- PLSA
  - PLSA assumes that the model parameters are fixed and unknown

$$\begin{aligned} \mathcal{L} &= \prod_{w_i \in V} \prod_{d_j \in D} P(w_i, d_j)^{c(w_i, d_j)} = \prod_{d_j \in D} \prod_{i=1}^{|d_j|} P(w_i, d_j) \\ &= \prod_{d_j \in D} \prod_{i=1}^{|d_j|} \left( P(d_j) \sum_{k=1}^K P(w_i | T_k) P(T_k | d_j) \right) \end{aligned}$$

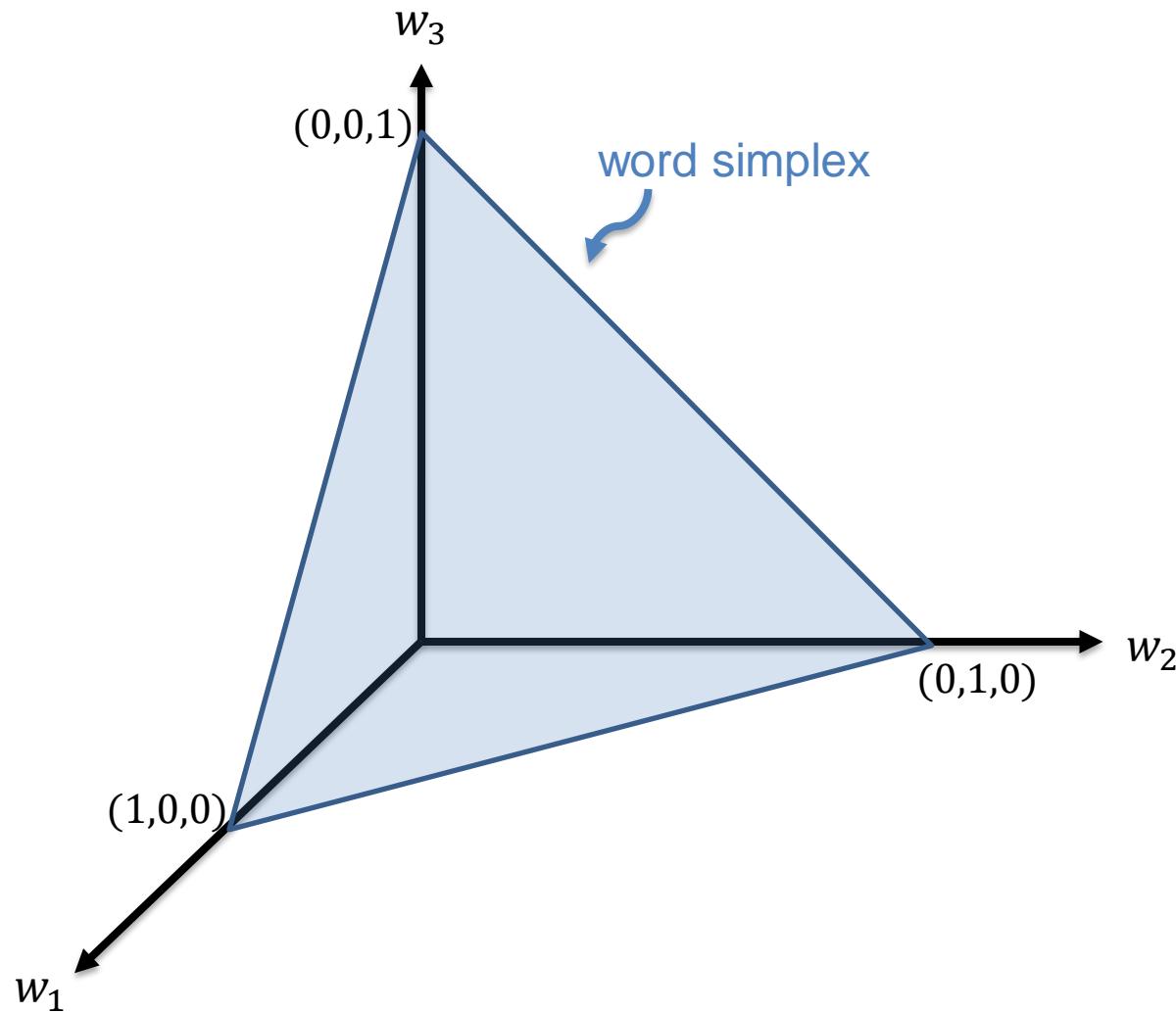
- LDA
  - LDA places a priori constraints on the model parameters
    - Dirichelet distribution

$$\mathcal{L} = \prod_{d_j \in D} \int P(\theta_{d_j} | \alpha) \left( \prod_{i=1}^{|d_j|} \left( \sum_{k=1}^K P(w_i | T_k, \beta) P(T_k | \theta_{d_j}) \right) \right) d\theta_{d_j}$$

# PLSA & LDA – 2

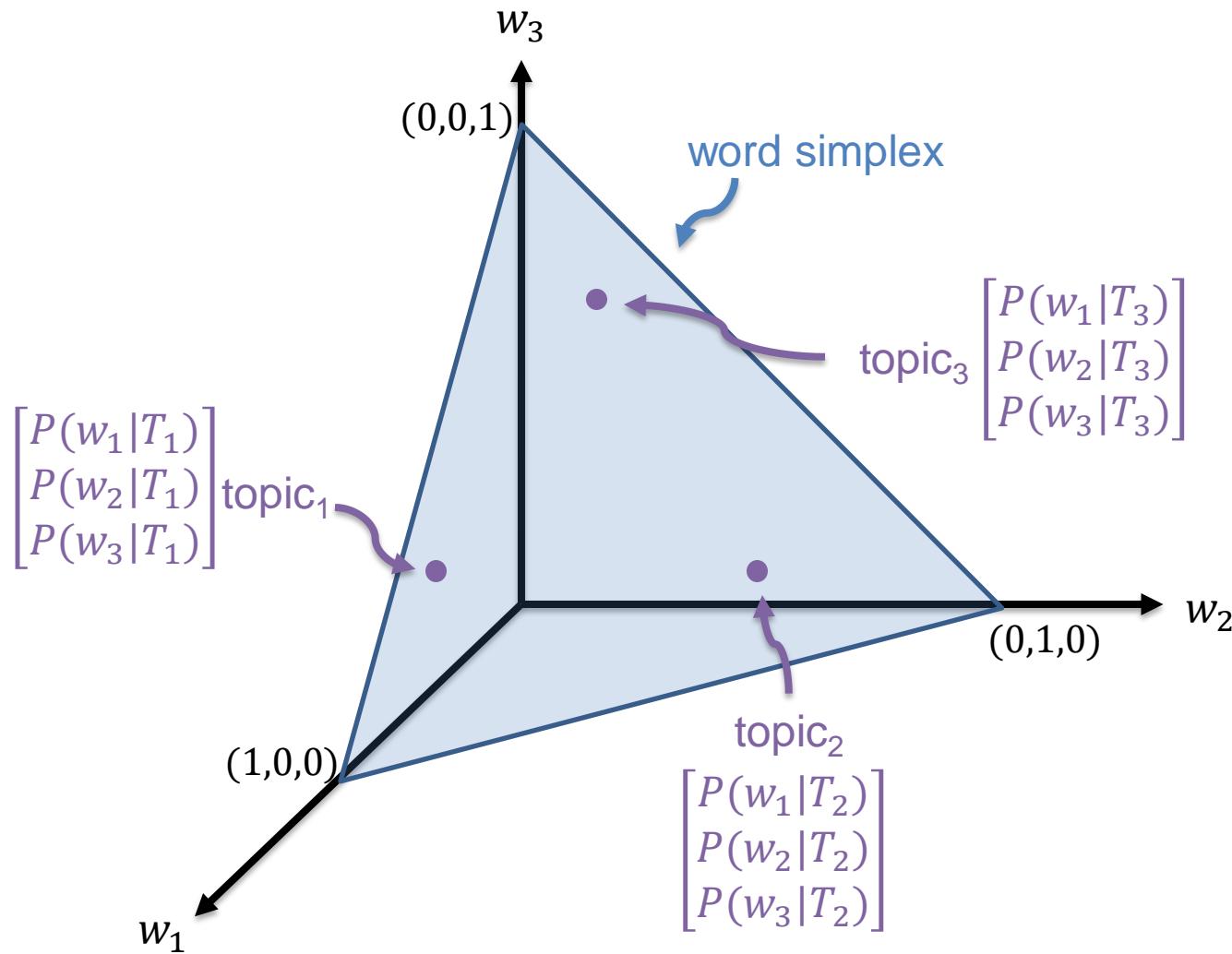
---

- The topic simplex for three topics embedded in the word simplex for three words



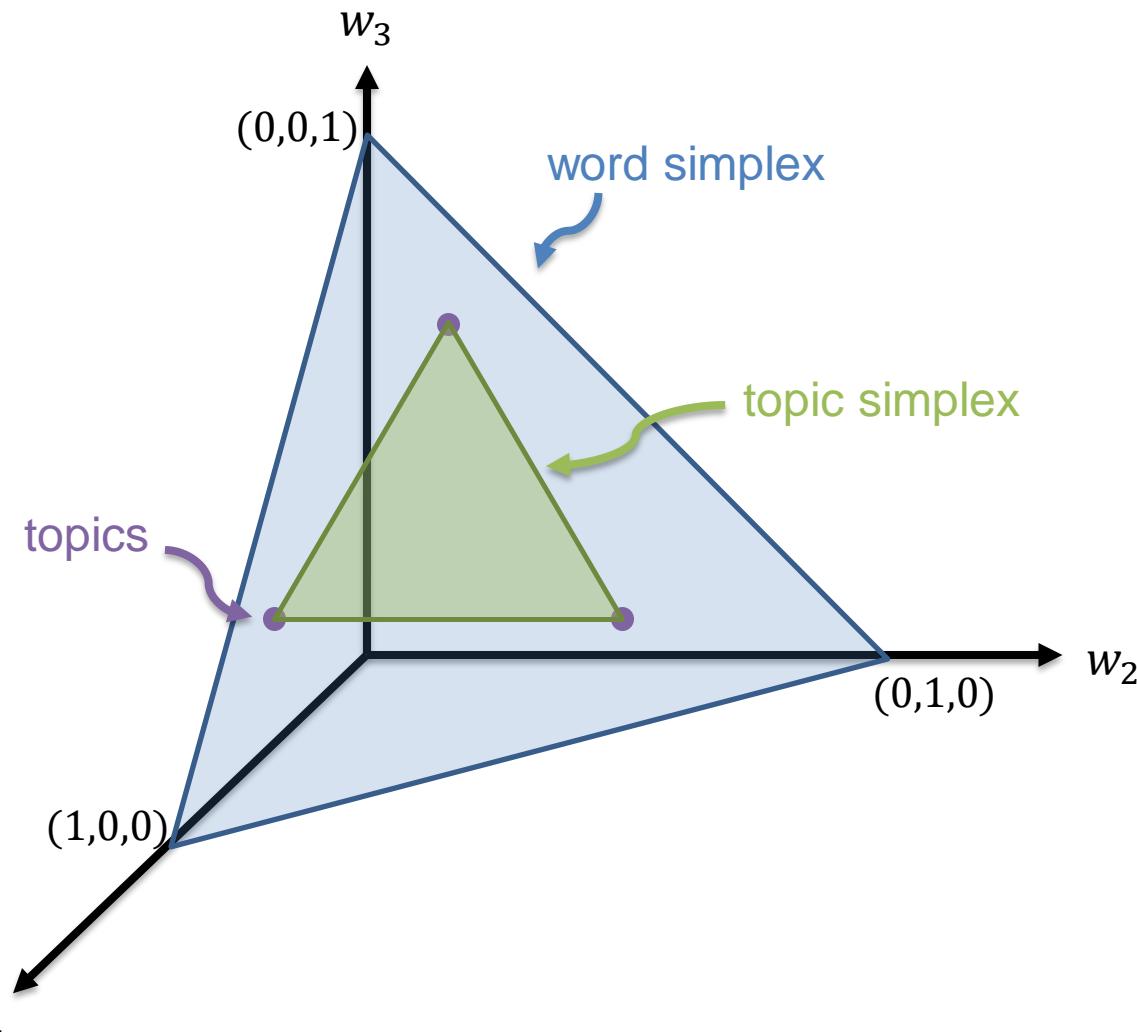
# PLSA & LDA – 3

- The topic simplex for three topics embedded in the word simplex for three words



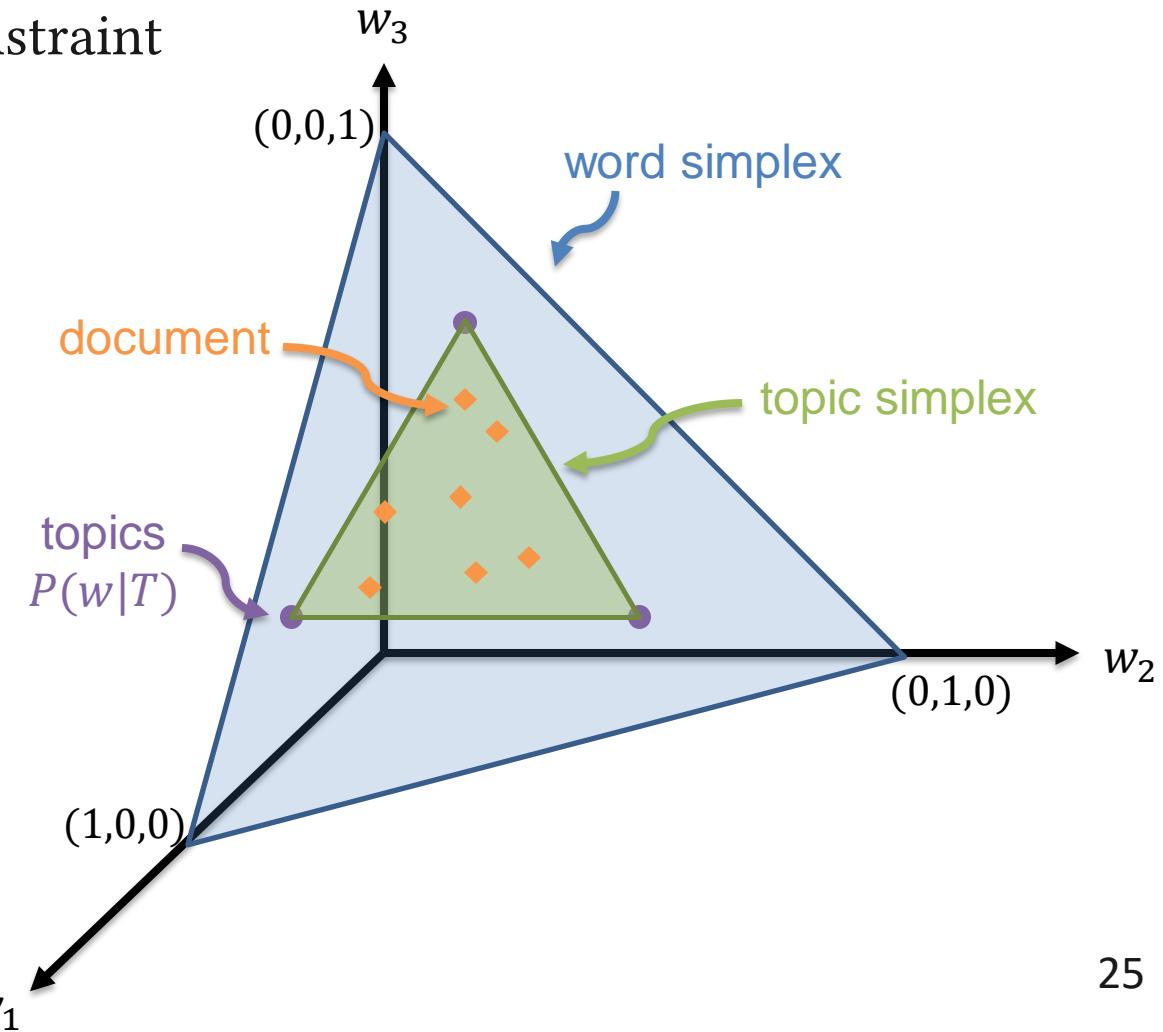
# PLSA & LDA – 4

- The topic simplex for three topics embedded in the word simplex for three words



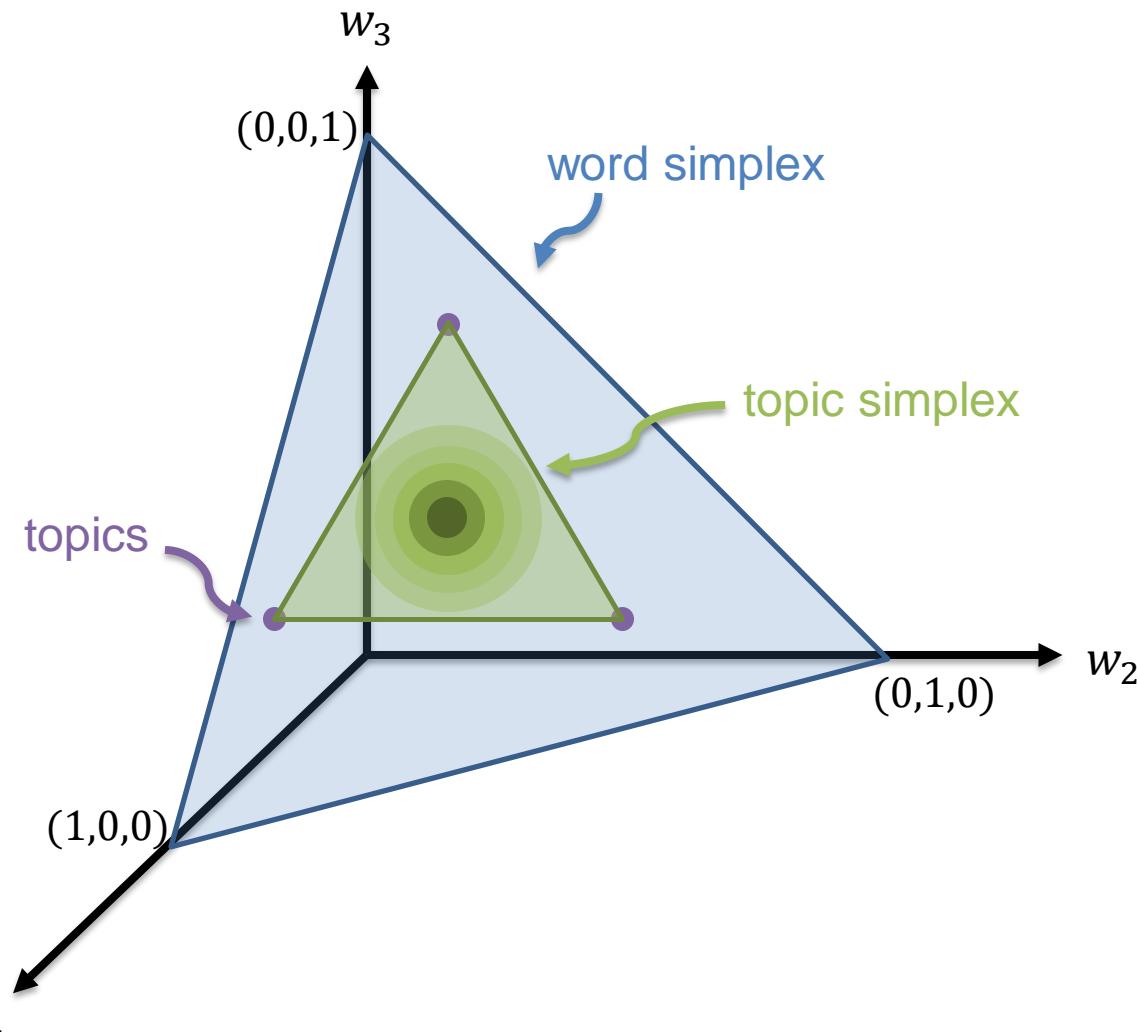
# PLSA & LDA – 5

- The topic simplex for three topics embedded in the word simplex for three words
  - PLSA: no prior constraint



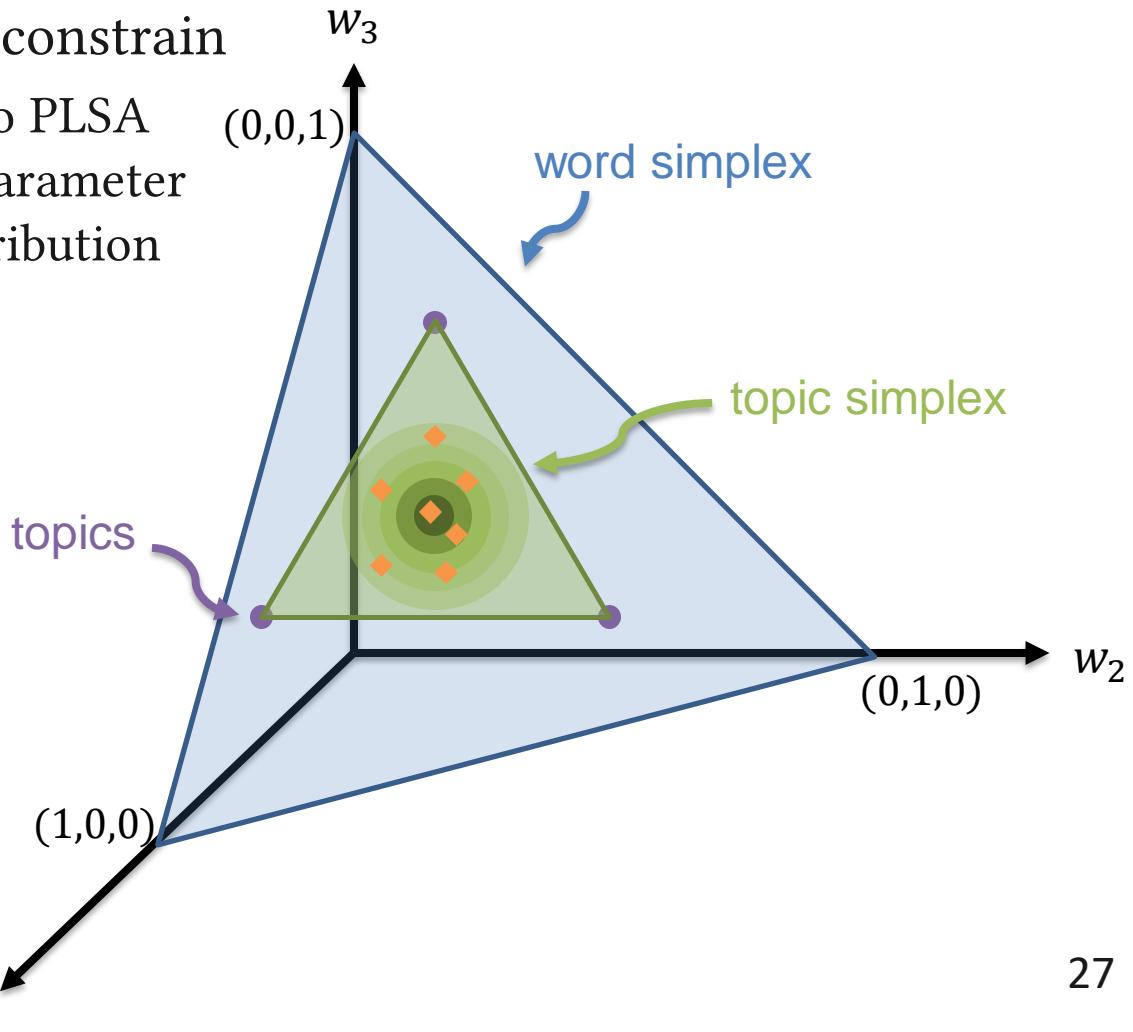
# PLSA & LDA – 6

- The topic simplex for three topics embedded in the word simplex for three words

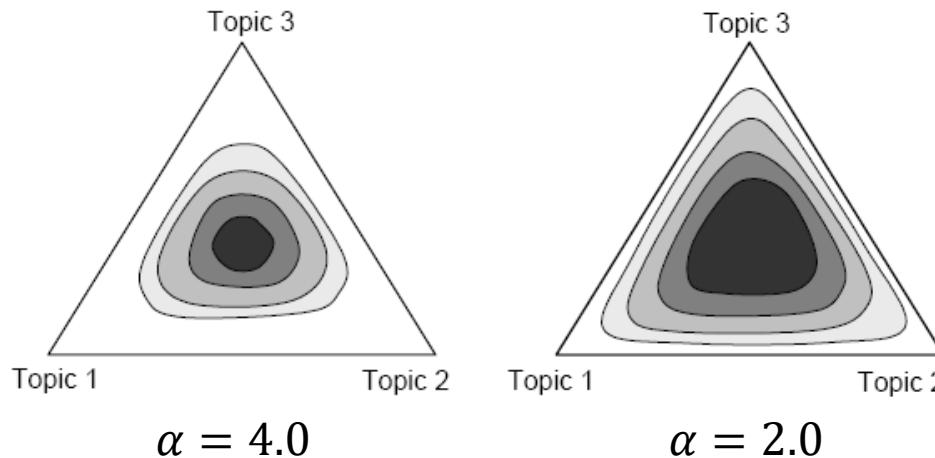


# PLSA & LDA – 7

- The topic simplex for three topics embedded in the word simplex for three words
  - LDA: follow a prior constrain
    - LDA will reduce to PLSA when the hyper-parameter for Dirichelet distribution sets to 1

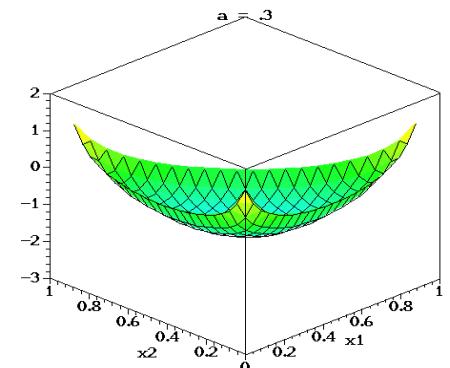


# PLSA & LDA – 8



- Dirichlet priors on the topic distributions can be interpreted as forces on the topic combinations with higher  $\alpha$  moving the topics away from the corners of the simplex, leading to more smoothing

$$P(\boldsymbol{\theta}|\boldsymbol{\alpha}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^K \theta_k^{\alpha_k-1} = \frac{\Gamma(\sum_{k=1}^K \alpha_k)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \theta_k^{\alpha_k-1}$$



# LDA – Experiments

---

- QL: query likelihood measure
- CBDM: cluster-based model (simplified variant of PLSA)
- LBDM: LDA model

| <b>Collection</b> | <b>QL</b> | <b>CBDM</b> | <b>LBDM</b> | <b>%chg<br/>over QL</b> | <b>%chg<br/>over<br/>CBDM</b> |
|-------------------|-----------|-------------|-------------|-------------------------|-------------------------------|
| <b>AP</b>         | 0.2179    | 0.2326      | 0.2651      | +21.64*                 | +13.97*                       |
| <b>FT</b>         | 0.2589    | 0.2713      | 0.2807      | +7.54*                  | +3.46*                        |
| <b>SJMN</b>       | 0.2032    | 0.2171      | 0.2307      | +13.57*                 | +6.26*                        |
| <b>LA</b>         | 0.2468    | 0.2590      | 0.2666      | +8.02 <sup>2</sup>      | +2.93                         |
| <b>WSJ</b>        | 0.2958    | 0.2984      | 0.3253      | +9.97*                  | +9.01*                        |

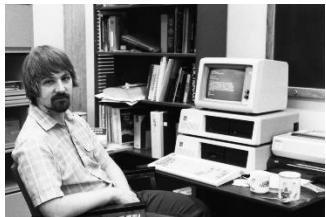
# The Evolution

David M. Blei  
Columbia University, USA

Thomas Hofmann  
ETH Zurich, Switzerland



Scott Deerwester



2003 Latent Dirichlet Allocation

1999 Probabilistic Latent Semantic Analysis

1998 Language Modeling Approaches

1994 Best Match Models (Okapi Systems)

1988 Latent Semantic Analysis

1976 Probabilistic Model

1975 Vector Space Model

1973 Boolean Model

1972 Inverse Document Frequency

1957 Term Frequency



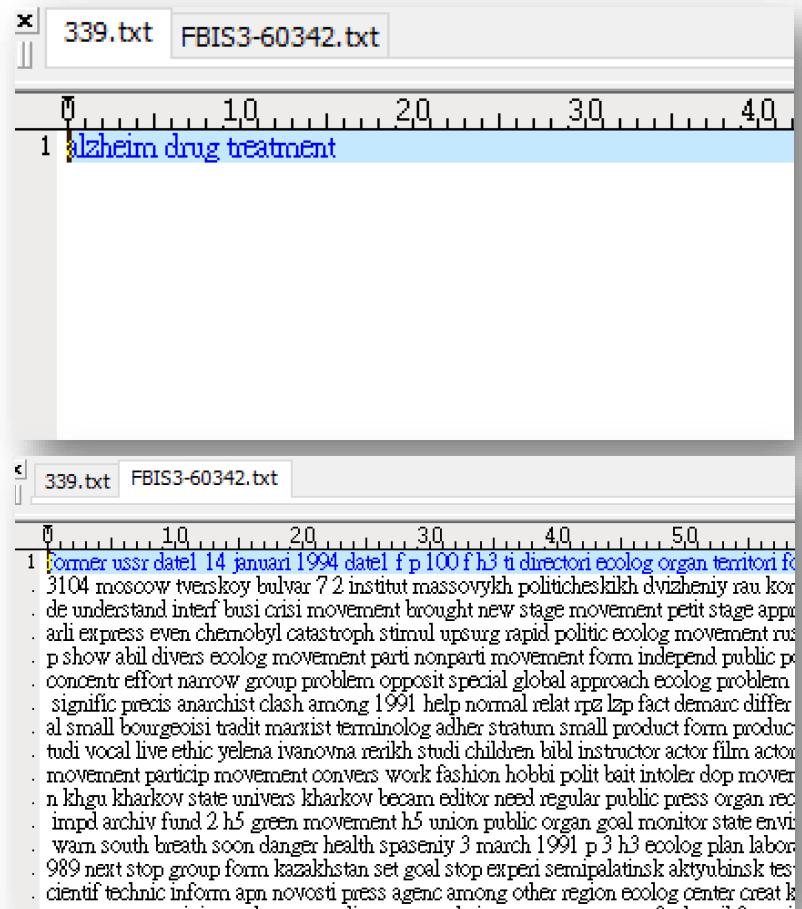
# Homework 4 – PLSA

# Homework 4 - Description.

- In this project, we have
  - 100 Queries
  - 14995 Documents
  - Our goal is to implement the PLSA model, and incorporate the PLSA and query likelihood measure for retrieval
    - The ultimate goal is to enhance the estimation of each document language model

$$P(q|d_j) \approx \prod_{i=1}^{|q|} P'(w_i|d_j)$$

$$P'(w_i|d_j) = \alpha \cdot P(w_i|d_j) + \beta \cdot \sum_{k=1}^{t-1} P(w_i|T_k)P(T_k|d_j) + (1 - \alpha - \beta) \cdot P(w_i|BG)$$



# Homework 4 - Description..

---

$$P(q|d_j) \approx \prod_{i=1}^{|q|} P'(w_i|d_j)$$

$$P'(w_i|d_j) = \alpha \cdot P(w_i|d_j) + \beta \cdot \sum_{k=1}^K P(w_i|T_k)P(T_k|d_j) + (1 - \alpha - \beta) \cdot P(w_i|BG)$$

- The background language model can be estimated by referring to the document collection

$$P(w_i|BG) = \frac{\sum_{d_j \in \mathbf{D}} c(w_i, d_j)}{\sum_{d_k \in \mathbf{D}} |d_k|}$$

- The document unigram model can be obtained in the same manner

$$P(w_i|d_j) = \frac{c(w_i, d_j)}{|d_j|}$$

- The PLSA model is trained on the whole document collection

# Homework 4 – Description...

---

- The evaluation measure is MAP@1000
  - The **hard** deadline is 11/26 23:59
  - Your point is depended on your performance on the **private** leaderboard!
    - 50 public queries and 50 private queries

$$YourScore = 5 + \frac{YourMAP - BaselineMAP}{HighestMAP - BaselineMAP} \times 8$$

- Please submit a **report** and your **source codes** to the Moodle system, otherwise you will get 0 point
  - The report will be judged by TA, and the score is either 1 or 2

# Homework 4 – Description....

---

- You should
  - upload your answer file to kaggle
    - <https://www.kaggle.com/t/7de0b487e0d2451a95a2b033fb46c262>
    - The maximum number of daily submissions is 20
    - **Your team name is ID\_Name**
- M123456\_陳冠宇
- Please follow our rules
  - Don't cheat!
  - Don't create multiple accounts!
  - Implement the language model-based IR system!
    - You can only leverage ULM and PLSA to do retrieval
    - Enjoy the language models

# Questions?

---



[kychen@mail.ntust.edu.tw](mailto:kychen@mail.ntust.edu.tw)